
_/OSI/UK User Group Newsletter

~,
I

7,J

~

,,i

Vol.2 No.1 December 1980

•

r-~gn· l I I ! : 1 : i : ! lr , ~ : : : ~ ~~
r ' . , i '.,' ' .. ' •• ,.
L I· ll , 1 .. i . ,

I' I 'I I. " ' . '' . ''' , f·,. I r:·l 11·:.· 1 •• •- •·.:.;--~

!.. . I' I I i ... ' .. I.:.' - I
- J: '. . ! 'C. - I"-+ ~· .. ' I ·•11 .,,1...___ - If. I t ' • I ••• - - • ' +---+··--t

I i I I ' I • --'--~-r --·r . ··it•·: ·r•r>,'
-I j i : ; , • .. -+. •--1 1 I J • , I __ • -~- , __

t l ------ i ·

1'!$1.1+ : j : f. ' ; :; : . : . :'. c_: :.cc:= r. , .. • '" """ .. , . , ...
·-~ , · 1L -1-.:..:~.:..:.-:-r:~;:-:-:-=-
- hL+l•r·

11
,,,.

·, 1 ' . • • C r::-: :·"'."~
• _;_._._ t.

1, I[!' 'L .:.~ I 1> +- ... J ;.:. .,. I, 'j '. . 1- .,..
I ' k'-r- -j--+- ' 1 1-1 ... t-L-...-· 1 I i • w •

·r• ·n·t' '. t '-,-! . .:.-, +- i--+----c J ' + f ·t--:1. ,.;_: ;-it_ 1 ~J I ; I
• • j_ '. 7j=:M' r r •.--+ 1- 1 f , , -- ... , •

4

I +~ .) 'l
.. ; I " I I . ' .j t • l ' ' •··i - "'i ' .. t· l I' , I I 1 1 • ,• 11 J,- + ·. I ~ I ! j I 1 . -·

•. , •. ~ . I ' I r r l a t '] • , ,. ,

' I : : • I ' I •. ', '. I •-~ 1 ·• 1 r m, I"' r 7 j I ... , , . . • .L.; , -i Tr ...
11 j .c.---+ tt i- · ' 1 1 ~ I , . ,

• I I I''

A BASIC guide to machine-code
Notes from members on many matters of hardware and software

_, __

Editorial
It's a year later. W e've done a lot , too . The worst bugs in the BASIC-in -:<OM
documentation have been resolved; a variety of 'fixes' for the Superboard' s
limited screen display have gone out; the 'garbage collector' now clears up string
garbage instead of creating it; and the new monitor is out and doing its job .
We ' re delighted, too , with the response to the 'new deal ' for the Newsletter - a
higher sub but more issues - in that we ' ve had around a 70% resubscription so
far, with more every day, and we ' re still almost a month from publication date.

We know it 's a lot - but we give a lot, too. Remember, too, that the monthly
mags like PC and PCW would cost something like three time s as much as they do
if they didn ' t have that mass of advertising ... and their circulation is fifty tim es
the size of ours!

But we haven ' t time to be co mpla cent : there's a vast amount still to be done .
For the disc users - we ' re coming round to your needs at last, especially as
Richard and George split a C8-DF upgrade kit between them, to give them each a
single 8" disc system. For the hardware hacks - interfaces, internal features and
tricks , and of course colour (on which a major feature next issue). Not forgetting
the relative beginners - hence the BASIC-to-machine-code series starting this
issue. And everyone else, of course.

For which reason we tend to be somewhat slow in answering queri es! Th
Group is supposed to be a spare-time occupation ... and since we're becomin
involved in a local (Somerset) set up of Dave Tebbutt 's ComputerT own
computer-literacy scheme, there 's still less of that spare time . We do try - but
miracle workers we ain ' t!

Most of our time goes into producing this Newsletter, and into produ c ing it on
time ... So, for those who tend to be worried by dates and things, the next issue
is due out on 22nd February 1981, to be followed in April, June, August,
October, and round to December again. Mark that on your calendars - and
we'll see if we can actually keep to those dates!

In the meantime between the issues, we do try to answer your queries as fast as
we can; but it does help us if you direct the query to the right person. There is no
point in asking me (Tom Graves) questions on hardware - I do actually know
one end of a soldering iron from another, but that 's about my lot! Documentation
and software are more my line~ particularly systems software. George, on the
other hand, is happier with applications software, and on hardware can
probably recite the functions of the 74LS TTL series by heart. So:

Documentation/software:
Tom Graves, 19a West End, Street, Somerset, BA 16 0LQ.
Phone (evenings only, please): Street (0458) 45359.
Hardware:
George Chkiantz and Richard Elen, 12 Bennerley Road, London SW11 6DS.

~\) (1

J

Documentation Corner

Speeding up GOSUBs
A comment from Peek (65) magazine : GOSUBs are found in the program by scanning ev
ery line number from the beginning, each time the GOSUB is called. The nearer they are
to the beginnin g, the faster they will run . Peek (65) gave the following example:

1 GOTO 60000
2 K= K+l : RETURN
60000 FOR I= 1 TO 1500 : GOSUB 2: NEXT I: END

takes about 10 seconds to run . But the more usual way of doing it:
1 FOR 1= 1 TO 1500 : GOSUB 60000 : NEXT I: END
60000 K= K+ l : RETURN

takes about 30 seconds to run! As they suggest, "any subroutin e called frequ ently or
called from a loop should be located near the start of the program . Put that monster of an
initialisation routine at the end next tim e".
Quotes in text INPUT

1 A couple of machine -code ut il itie s from Steve Graham , written for a C l underCEGMON .
The first allows carr iage-return on its own to be treated as a null input , so that the program
does not halt. Strings input an empty string , and numer ical values get 0. It is activated by
pointing the input vector at it, i.e. POKE 536, 64 : POKE 537,2 if the routine is located at
$0240.
2046FB
C90D
D009
EOOO
D005
A020
8413
E8
60

NULL

RETURN

JSR $FB46
CMP #$0D
BNE RETURN
CPX #$00
BNE RETURN
LOY #$20
STY $13
INX
RTS

lnput - $FFBA under SYN MON
=(CR)?
if not , then return
first char?

, if not , then return
, putspacechar

into buffer
, increment pointer

A couple of routine s on similar prin c iples, this time to al low commas and colons to be in
cluded in string input I resolving jack Pike 's problem of Newsletter 2 - Ed.] . It is done by
replac ing each comma by a right-hand square bracket on input, and re-replacing the
bracket by a comma on output (and similarly with colons and left-hand brackets). The re
sult is that , as far as the user is concerned, he types a comma and sees a comma displayed
on the screen, but the computer thinks it has got a bracket instead. (Of course, if you are
perverse enough to want to use square brackets, you wil I have to change your commas in
to something else).
2046FB NEWIN
C92C
D002
A95D
C93A
D002
A95B
60

NCOMMA

NCOLON

JSR $FB46
CM P #',
BNE NCOMMA
LOA #$ 5D
CMP # ':
BNE NCOLON
LOA #$58
RTS

input
if comma

rep lace by I
if co lon

replace by [

, This time it is necessary to change both the input and output vectors. If the first routine is
" located at $0240 then the second will start at $0250 so the vectors should be changed

thus:
POKE 536,64: POKE 537,2: POKE 538,80: POKE539,2

2

• T• - .. ~z --_--_ L ii-"---"-·--· -·-

, __

To prove that there is alw ays more than one way to handle any probl em, 5.A. Smith sent
us this rather elegant solution to the same problem , this tim e on a UKl 01 under Camp 's
'New Monitor '. Thi s works by forc ing the first character in the string input to be a", after
which any delimiter s can be used except another" (whi ch would have to be done by the
substitution method shown above).
BA START TXA
D005 BNE CONT
A922 LDA # "'
851 3 STA $13
E8 INX
20 AC FB CONT JSR $FBAC
60 RTS

check buffer empty

forces quote s
store as first in buffer
inc. char counter
input routin e
exit to BASIC

The addr ess of the input routin e must be the correct one for your monitor : the one shown
is as for Com p's New Monitor ; for SYN600 use $FFBA, and for CEGMON use $FB46. The
input vector at $0218 /9 must be changed to point to the start of thi s routin e. You would al
so have to use this to reload such input s if they were stored on tape, of course. (C2/C4 sys
tems will need CEGMON before they can use these routines - under SYNMON they do
not have user-defined input/output vectors) .

A brief note on a tape-viewing routine , from George Chkiantz: The following 'View ' rou
tine allows you to view tapes without putting them into memory; it runs happily at 300
baud , but is too slow to run for 4800 baud interfaces.
10 ACIA=64000 : REM 64512 on C2/C4 and C7E
20 ? CH R$(PEEK(ACIA + 1)) ; : WAIT ACIA, 1 : GOTO 20

Disc Notes

Block Delete for 65U
Alan Garrett writes : OSI offer their standard combination of inspired idiocy as a block de
lete function. This one actually works and doesn't crash your program!

Key in the routine as a program and SAVE it with a relevant name (BLKDEL?). Load it on
top of the program to be 'manicured ' using the FLAG 13 method.

Then give it the two line numbers between which the main program is to be deleted.
The routine will print a) amount of memory saved in bytes; b) old end address of program;
c) new end address of program; d) two values to be POKEd into BASIC so that the system
knows how long the program is. These two values should be POKEd in as one line in im
mediate-mode, and cannot be POKEd in by the routine, as horrible things happen!
60010 INPUT"Line numbers please ";Ll ,L2: IF L1 >L2 GOTO 60010
60040 D=6*4096+ 1: ST=0: Fl=0 : DO=0
60045 PTR=PEEK(D)+PEEK(D+1)*256
60050 LN = PEEK(D+ 2)+PEEK(D+ 3)*256
60060 IF LN=Ll THEN ST=D : REM find lines
60070 IF LN=L2 THEN Fl=D
60080 IF LN<60000 THEN DO=D : D=PTR : GOTO 60045
60090 EN=D: IF ST=0 OR Fl=0 THEN PRINT "Error": GOTO 60010
60100 OS=FI - ST: D=FI: REM amount of memory saved
60105 FOR Z= 1 TO 10000: REM dummy FOR/NEXT
60110 PTR=PEEK(D)+PEEK(D+1)*256

3

,,
I

~,
,, ,,

~-
,.

,.l

1: :I
.t ,.

\

f/1

.J.

/

J

I.

60120 X0= PTR- OS: Xl = INT(X0/25 6): X2= X0- (Xl *256)
601 30 PO KE D,X2: PO KE D= l ,Xl
60135 IF D<> DO TH EN D= PTR: NEXT Z
60140 FOR l= FI TO EN + 1: X= PEEK(I): PO KE(I- OS),X: NEXT I
601 50 PO KE EN + 1- OS,0: PO KE EN- OS,0
6016 0 PRINT OS: REM memory saved
60 170 X= PEEK(l 22)+ PEEK(l 23)*256
601 75 PRINT X: X= X- OS-5 88: PRINT X: REM see note below!
60 180 Xl = INT(X/256): X2=X - Xl *256
60 185 PRINT" PO KE into 122 " ;X2;" and into 123 ";X l
60 195 CLEAR

Bew are of the number in 60 175 - here 588. Thi s is the length of the delete routin e, and
w ill effectively change acco rdin g to the numb er of spaces or REM S you leave in the rou
tine's code . It must be adju sted to the actual value fo r the routin e to wo rk co rrectly (other
wise BASIC w ill muddl e up the end of the program w ith the beginn ing of var iable-storage
space).

65D fast screen clear
The BASIC-in-RO M fast screen c lear from Aardvark (published in Issue 2), whi ch point s
strin g storage at the screen area and then 'stores' strin gs of blanks into it, will also work on
Cl s and C2s under 65D . There is one di fference: the strin g po inters are at 128 10 and
129 10 , not 129 and 130, so the routin e as publ ished w ill need to be changed slightly to
suit.

Moving the 65D directory
Anoth er note from Aardvark : "O ne of the most damnable thin gs that the OSI progr ammers
did w as to put the d irec tory track right in the middl e of the 5" di sc. Instead of getting 39
tracks of fil e space, you get 10 on one side of the d irectory and 26 on the other" (Aardvark
havin g moved the BASIC util ities onto ju st two tracks!).

The di sc fi rst has to be set up w ith its DI Rectory, CREA TE and DELETE utiliti es set up to
call track 39 (or w hatever track you want to use) instead of track 12. (i.e . wh erever it says
DISK!"CA 12, ... " change it to DISK!"CA 39 . .. ") . Do the same for the SAVE function s.
(If you don' t do thi s, you won' t be aole to use the di sc, of course!).

The 65 D machin e-code then needs a littl e tweaking to compl ement the changes. Boot
up, EXIT, and call EM . Then:
!CA 4A00= 0l , 1
@4D C4 / 7 2 39 type (new track no.) to replace 12
!SA 01 , 1 = 4A00/8
!CA 4A0 0= 05, 1
@513A / 72 39
!SA 05, 1 =4A00 /8
!CA 4200 = 06, 1
@42B8 / 7239
!SA 06 , 1 = 420 0/1 note - one sector only
!CA 4200= 1 2, 1 move dir ectory information to new track
!SA 39, 1 = 4200 / 1
!CA 4200= 12, 2
!SA 39,2=4200/1
!CA 4200= 12,3 and move GET/PUT overlays
!SA 39, 3=4200/1
!CA 4200 = 12,4
!SA 39, 4=4200 /1

--1

.J

.,,.
, __

Intermittent bug in 65U PRINT
A note from Paul Nikiel: if you want to skip over a couple of fields and then start PRINT
ing, you would attempt to use something like :

INDEX<l >= l000: INPUT%1 ,A: INPUT%1,B : PRINT%1, X
This does not always work. The PRINT statement may not be executed although no warn
ing message is given and control drops through to the next statement. One way round it is
to reset the INDEX between the last INPUT statement and the first PRINT statement: IN
DEX<l >=INDEX(l).

Keyboard PEEK in 65D
A note from David Dade: When you want to use the keyboard routine at $FD00 to 'G ET' a
key value, PEEKing (531) won ' t work under OS65DV3, as that location no longer con
tains the key value by the time the keyboard routine has wandered back to BASIC. But the
value requir ed is still at 9059 10 ; so a possible BASIC routine would be:

5000 REM get key value
5010 POKE 8955,43: POKE 8956,37: REM must be on same line
5020 X= USR(X)
5030 K= PEEK(9059)-48
5040 IF K<0 OR K>9 THEN 5000: REM in this case only allows values 0-9 digits
5050 RETURN

Note: Line 5010 loads the X= USR(X) start locations with the start address of the
OS65DV3 keyboard routine (not at $FD00 to start with).

A cassette problem with 65D
A couple of problems with 65D from Tony Resta/1: Prior to getting the disc drive for my Su
perboard I used a cassette for storage and I now want to put some of these programs onto
disc from the tapes. So to the problem: how do you do it? According to the documentation
on the disc drive all that is required is to type INPUT #1 and it should input from the ACIA
input port. But this does not happen as the error code tells me that I cannot use INPUT in
the immediate mode . I tried typing EXITthen INPUT#l , to which I got"ARE YOU SURE";
"Y" I said, and initialised track one of my command disc.

Problem 2: I you load a program , through the keyboard, in machine-code , how do you
save it on disc? The only way that I can see is to return to BASIC by hitting the BREAK key
and warm-starting, but this alters the machine-code program . Any help on these topics
would be appreciated.
[Ed. - INPUT#1 is for data, not programs ; as with ROM BASIC, you can't enter a new
source-code line through INPUT. When writing CEGMON we had to do something like
this to pass information from a C2 to a C3, by fi_ddling the input/output pointers (more on
this next issue); but the problem here would best be resolved, I think, by using a small
BASIC or machine-code routine to scan the ACIA and pass its information to the 65D BAS
IC input routine. The second problem would appear to be resolved by the DOS command
SAVE, which saves memory direct to a specified track of the disc, but I'm none too sure of
this. Suggestions, please?]

Assembler Notes

Here is a note from Roger Pristerthat should warm the hearts of those who use the cassette
version of the assembler. The bad news is that it does not make the assembler produce ob
ject code in the normal OSI SYNMON tape format rather than the accursed checksum
(volunteers, please!) , but it does allow you to merge source code files which have the
saI,1e line numbers - something that can scarcely be avoided with the luxury Rese
quencer provided by our friends in Ohio .

5

\

~,
,(

~p

/

/

The machine -code shown below is placed at the start of the assembl er's work -space
a good place to put extra routines like this and/or the Elcomp CONTRm-C routine (which
halts an assembly in mid -stream). This is at $1391 and does not allow you to retain the
checksum 'bootstrap ' loader used by OSI to load the assembler itself. Our views on this
are probably well known by now, and we suggest that you save the modifi ed assembler
using a straight hex dump. Otherwise you will have to relocat e the loader or waste valua
ble space.

A useful trick with the OSI assembler is that any lines numbered Oare placed sequen
tially after the last Printed line in the work-space. The modification works by interruptin g
the ca ll to $0A84 to check the Load flag. If this is set it forces a null ($00) into $00E7 which
fools the assembler into thinking that the line number being loaded is 0. Thus, once the
comp lete source code to be merged has been loaded in , normal operations and lin e
numb ers on the combined file can be resumed using Resequence.
$1391 48 PHA
$1392 A900 LOA #$00
$1394 CD 03 02 CMP $0203
$139 °7 F002 BEO $1392
$1399 85 E7 STA. $E7
$139B 68 EXIT PLA
$139C 20 84 QA JSR $0A84
$139F 4C 1C03 JMP $03 1C

'. (load flag)
; (EXIT)

The following locations wi ll have to be changed in the assembler itself:
Change From To Code
$0319 20840A 4C9111 JMP$1391
$12C9 91 A2 (new start of work-space)
$1 2 FF 91 A2 (new start of work-space)

This mod can be turned off by using the monitor to change the contents of $1399 from $85
to $AS. In use, Print to the lin e numb er you wish to be followed by the new section , then
load the requir ed section from tape . Though the tape's line numbers will be output to the
screen, they are not in fact in the source file. When the tape has finished loading , turn off
Load, and Resequence. Although it is possible to use most of the assembler functions with
line s numbered 0, beware - others (like Delete) have a will of their own'

Here are tw o useful location s relating to the assembler:
$1311 JSR $FFEB gets a character (monitor INVEC)
$1333 JSR $FFEE prints it (monitor OUTVEC)

Armed with this inform ation it is easy to add useful routines to halt printout or to imple
ment backspace (users of CEGMON will know that its editor and backspace both work on
the assembler as is). To retain compat ibility with CEGMON we recommen d that you
don't use the limit ed 'free RAM' from $0222-$023F for these routines, but place them at
the beginning of the assembler's source file , cha nging $12(9 and $12FF to point to the
new start (as shown above) as required.

Another point that has been pointed out by several members , and has caught out sever
al others, is that the assembler uses the IRQ vector at $01 CO (via the BRK opcode, $00) as
a jump to warm-start on error-recovery. This means that if you use this area - in testing a
routine with CEGMON's breakpoint hand ler, for examp le - you will have to re-install
the co rrect machine-code at $01 CO before restarting the assembler, or nasty thing s may
happen! The same applies to ExMon , by the way.

b

.,:.

CEGMON Notes

Judging by the number of notes and comments we've been sent, CEGMON is evidently
'relieving our members firmware headaches' as promised - it's nice to know that our
hard work is appreciated! A number of common points and confusions still turn up,
though, of which the most important is about 'BASIC unmask'. If you wish to use the CEG
MON control characters to clear the screen or whatever in BASIC's immediate-mode,
BASIC's 'masking-off' of most control characters has to be bypassed. To do this, you either
have to replace the BASIC 1 chip with an EPROM with the masking code removed (it oc
curs around $A357), or else you have to direct the input vector to a routine that bypasses
the masking code. It was the latter solution we used with CEGMON. But although BASIC
then permits control codes - like CONTROL-Z, to clear the screen - to be input and stored
in the input buffer, it does not recognise them as valid characters. Typing CONTROL-Zin the
immediate-mode with the masking removed will clear the screen; but the next RETURN will
cause a SYNTAX ERROR message to be printed. A number of people writing in gave inge
nious solutions to this , including one to check for control characters and to avoid them
being placed in the buffer. However , we feel that the easiest and simp lest solution is to use
the backspace -coNT ROL-Z RUBOUT- and delete the control code once it has done its job.

Another minor problem that has arisen is that in using the machine-code load routine, it
is possible that location $0000 may have its data corrupted. As with SYN MON, this is be
cause CEGMON's load routine can fall into the data mode if a particular sequence of
glitch characters occurs; and others (such as commas or line-feeds) cou ld even increment
the address. This is inconvenient if you are loading machine-code patches to BASIC and
the result is that BASIC won't warm-start. Obviously if this happens, restore the first few
page-zero locat ions ($0000-$0002 should read 4C, 74, A2 respectively) before calling
warm-start. However, the chances of this happening will be considerably reduced if you
type a ROM address like $A000 as the current address before you Load. Just let it try to
corrupt that!

A couple of people have asked why backspace in CEGMON was made to correspond
to $SF instead of the true ASCII $7F. The reason is that of compatibility: OSI have based all
their major programs round the old Teletype bodge of SHIFT-0 as 'underscore-as-de lete',
which meant that we had to follow suit; RUBOUT was decoded in this way so as to make it
easily accessible regardless of the state of shift-lock or shift keys.

One additional compatibility problem has confused a few Cl E users. The Mutek Cl E
conversion effectively converted the Cl into a C2 with a limit ed-width display; the width
limit was set manually by answering '48' to 'TERMINAL WIDTH?'. This meant that pro
grams had to be LOADed and SAVEd with POKE 15,72, or else lines might be truncated
by the input routine. With CEGMON, there is no need to answer '48' to TERMINAL
WIDTH?' -the screen width is controlled by the new firmware. So leave it alone! And as
with the original Cl and C2, answer 'TERMINAL WIDTH?' with a simple RETURN.

In Issue 2 we mentioned a method of loading machine-code directly after a BASIC tape:
the procedure is slightly different under CEGMON. As before, type: SAVE RETURN LIST
(turn recorder on) RETURN (stop tape when done) ?"POKE 251, 1: POKE 11,136: POKE 12,
249: X= USR(X)" (restart recorder) RETURN (stop tape when done). Notice that the POK Es
are different from under SYNMON: it restarts during the LOAD at the beginning of the
command-mode execution loop, without clearing the machine-code "load" flag (251 10).

Now put the machine-code you want onto the tape. When you LOAD the tape from BAS
IC, it will load the BASIC program, switch to monitor mode (without clearing the screen)
and load the last part of the tape.

7

--- -

~

\,

,:r
(.
" ·,,!

, 41

tJ'·

.,

/

•

~-·

The BASICs of machine-code

Over the past year we 've had a fair number of comments on the lines of "All this machine
code information you publish is fine: but I don ' t even know where to start, so it's no use at
all". Most people get on reasonably quickly with BASIC- it is, after all, designed to be a
beginner's language - but without some basic idea of its concepts and terms , machine
code programming just can't make sense. The standard books on 6502 programming,
such as Zaks' Programming the 6502 and Leventhal's excellent 6502 Assembly Language
Programming, do assume that you know rather a lot about the subject before they start
or else, like Zaks, tend to confuse rather than help! So for the next few issues we ' ll be run
ning this series on basic principles and practice of machine-code programming, to be
based on, and linked with, OSl's BASIC. We'll assume no knowledge of machine-code at
all - so bear with .us if you do know the basics! - but we•will assume that you have a
working knowledge of programming in BASIC, for games and the like rather than for com
plex ,mathematical juggling.

BASIC is described as a 'h igh-level language ' for programming computers. But it 's high
level only in the sense that you don ' t have to think much about where things are ~ the
language translates things like PRINT statements for you, for example, without you having
to know what is being PRINTed to, where it is in the system memory, how it is accessed,
or anything of the ' lower' level at all. But precisely because it handles these things for you,
the language itself limits the flexibility with which you car, Lise the system. It simplifies
programming for some kinds of work - in BASIC's case, for basic mathematical functions
- while making others, such as text-matching and fast graphics , well-nigh impossible.
To do these elegantly and , above all, fast, they need to be done at a lower level - the ma
chine-code level.

BASIC itself, of course, is made up of these lower -level machine -code instructions. In
ROM BASIC, these can be seen by PEEKing the values stored in addresses 40960 to 49151
(we'll be dealing next issue with the meanings of the values you ' ll find there). Each BASIC
instruction consists internally of a long trail of routines and subroutines - every POKE has
to be checked such that its va lue doesn ' t exceed 255, or its address exceed 65535 , for ex
ample - which is why clearing the screen by POKEing it with blanks is so agonisingly
slow. A sing le POKE takes about 15 mi Iii seconds; the equiva lent LOA/ST A machine-code
instructions take about 15 microseconds - a significant difference!

Working in machine-code, however, can be more than a little daunting - particularly
;f your on ly way of working with it is through OSl's next-to-useless monitor in the standard
SYN MON, SYN600 and UKl 01 monitors. As you'll know, pressing 'M' in response to the
reset 'DIC/W/M?' prompt gives you a four digit number (an address) and a two digit
number (the value at the address) in the top left of the screen - and that 's your lot! OSI do
publish a cassette version of their very good Extended Monitor (ExMon) - supplied as
standard with UKl 01 s, otherwise about £8 from most dealers. Otherwise we would
recommend the CEGMON monitor (not least because we wrote it!) - its machine-code
monitor is designed to be compatible with ExMon, if somewhat less flexible, and it does
have the advantage of being built-in to the ROM monitor rather than a five-minute load
from cassette each time. We will deal with the use of the standard SYN MON monitor, but
for simplicity most of our examples will use the ExMon or CEGMON formats.

The difficulty with machine-code programming is that while the numbers in that four
digit section are relatively easy to understand - namely a system address - the two-digit
numbers can mean anything, dependent upon context. The number 4C (and it is a
number, a number in hexadecimal notation) could be a simple number (in other words 76
in decimal); part of a larger number stored in a number of bytes; ;:in index, or p;:irt of a
look-up t;:ible; an address, or part of one; ;:in instruction ()MP - 'jump' to the address de
fined by the following two bytes); the letter 'M' in the ASCII code; or ;:ill m;:inner of other

8

.,-.
.i... ..
;,.___

things. It all depends on its co ntext ; it all depends on wher e it is. Hence a coupl e of too ls
we'll describe in more detail next tim e: the assembl er, whi ch allow s you to assemble ma
chine-cod e instructions into a program with some semblance of clarity; and the di sas
sembler , whi ch all ows you to disentangle a string of hexadecimal machine- code values
into somethin g reasonably decipherable. Both are essential for serious machine- code
work ; but for the smil ller routin es we ' ll be starting off with they aren't all that important.
OSl 's assembler, for all systems including the UKl 01, is available from most dealers at
about £20 ; whil e there's a di sassembl er already built into ExMon , and we ' ll also give a
listing for a di sassembl er in BASIC in the next part of thi s series.

The other catch is that almost all machin e-code work is done in hexadecimal - count
ing in sixteens - rather than the dec imal that BASIC uses. 'Hex' takes a littl e getting used
to, but once you do know it, it will make the layout of your system a lot easier to under
stand. If you' ve ever wondered w hy your screen memory, for exampl e, starts at such an
odd num ber - 53248 - it's because in hex it is actually a nice round numb er: D000 . De
c imal numb ers count from 0-9 befo re addin g a 'one' to the next row to the left ; hexade
cimal count s in sixteens, from 0-9, then A- F (Fi s thus fifteen in decimal), and onl y then
adds one to the next row.

The largest number a single eight-bit byte can handle is 255 10 , or one less than 256 , 28

(28 'overflows ', leaving an effective 'all-zeroes ' in the byte). Describing a full eight-bit
byte in decimal is tedious and misleading, especially as the 6502 processor has a separate
BCD (binary coded decimal) 'decimal' mode of operation which doesn't quite appear as
.rue decimal on the outside. Counting in whole bytes, in 256's , is hopelessly impractical ;
but half a byte (nicknamed a 'nibble ' !) holds up to one less than 24, or up to 15 in decimal
(the processor counts from 0- thus there are actually sixteen possible numbers in a nib
ble). We can thus represent the contents of any byte by two hexadecimal numbers :
AF=l 75 10 , 4C=76 10 . To reduce confusion , particularly when using an assembler, the
convention for 6502 or 6800 processors is to prefix a hex value by a 'dollars' sign: 55 is
fifty-five, while $55 is eighty-five (5 x 16, + 5) in decimal. (Z-80 assemblers use a different
convention : hex values have an 'H ' suffix , thus 55H) . Don 't use the$ prefix when work
ing with the machine-code monitors , though ; they only know about hex, and will only get
confused if you try to tell them otherwise!

Writing in machine-code is rather like writing in a very tightly limited BASIC. You have
only three variables which you can use directly - the main registers A, X and Y - al
though you can operate on the rest of the memory with a very restricted range of func
tions. You have a very limited set of commands and functions- no large-scale functions
like* or MID$, only the ability to copy or change the contents of the registers or of single
memory locations. So programs have to be worked out in far more detajl than they would
in BASIC.

However, it's often easier to plan a machine-code program by writing it in a kind of
'dummy-BASIC . The system's A register, or Accumulator, is used by almost everything
a kind of high-speed messenger. The other two main registers, X and Y, tend to be used as
counters or pointers - hence their description as ' index registers'. If we treat these as
BASIC variables, their use may become a little more clea,·:
Machine-code instruction BASIC

LDA A= .. .
LDX X= .. .
LDY Y= ...
TAX X=A
TYA A=Y
INX X=X+l
STA ... =AorPOKE ... ,A

'J

"'1111"

'

·t,
J

,.

,v.
Jil

1'

J

~------- .. -··~··~

We then get into the subtle game of the 6502 's 'addressing mod es' . Unlik e the Z-80 ,
which has diff erent instruction s for everything, the 6502 and 6800 processors use the
same instruction in diff erent ways, to increase programming flexibility whil e (in prin cipl e
at least) maintainin g some semblance of comprehensibility . Thus the LDA instruction has
a numb er of variations :

LDA#$20
LDA$20
LDA$0220
LDA $20 ,X
LDA$2020 ,Y
LDA($20,X)
LDA($20),Y

'immediate '
'zero-page'
'absolute' .
'zero-pag e indexed'
'absolute indexed'
' indire ct indexed'
' indexed indire ct'

A=32
A=PEEK(32)
A=PEEK(2*256+ 32*1)
A=PEEK(32+X)
A= PEEK(32*256+ 32*1 + Y)
A= PEEK(PEEK(32 + X))
A = PEEK (PEEK(32)+ Y)

The last two may seem unnecessarily compli cated, but they are used a great deal to sim
plify the handling of look-up tables and the lik e. We ' ll be using a 'STA indexed indir ect'
for a fast screen-clear routine at the end of thi s articl e.

Mo st programming uses loop s, conditional loops and branches. BASIC does these with
FOR:NEXT, IF/THEN, ON /GOTOorON /GOSUB, GOTO and GOSUB. In machine code
there are equivalents , but they sometimes work in a slightly different way . In particular,
the IF/THEN tests are done against particular bits or 'flags' in a separate 'status register', re
ferred to as the 'P' register; the much-used BEQ and BNE (branch if equal / not equal) tests
check if the top bit in that register is set or clear respectiv ely , for that bit is set if the last LD ..
(or some other 'move' instruction like ROL or INC) resulted in a zero value .

JMP $0020 GOTO 32
JSR $0020 GOSUB 32
BNE ... IF (last value)<>0 THEN GOTO .. .
BEQ IF (last value)=0 THEN GOTO
JMP ($0020) ('jump indire ct') GOTO PEEK(32)

The last one is something you can't do in BASIC! It's used by the SYN600 and CEGMON
monitors to pass BASIC's input and output 'vectors' through RAM, to allow you to drive
your own devices directly from BASIC - but more on that in a later part of this series.

The 'branches ' - BEQ, BNE, BPL, BMI, BCS, BCC, BVS, BVC - we'II mostly leave till
later, but there is one point about them which is important. A JMP or JSR point to any
where in memory; a branch like BNE can only jump within a limited range - back 126 to
forward 129, to be precise. The branch instruction is followed by a one-byte 'displace
ment ' -which can only have a value up to 255, being a single byte - which used the top
bit of that value as a 'sign' flag, top-bit set meaning '-' or back . The maximum range is
-128 to + 127; but this is from the next byte after the branch op code and the displace
ment-value byte, so the effective range is -126 to + 129 from the branch op code itself. It
takes a little getting used to!

For demonstration, we ' ll show one of the most called-for routin es-a fast screen-clear. In
OSl's BASIC, you have two 'offi c ial ' option s: scrolling the screen with FOR X= 1 TO 32 :
PRINT : NEXT - whi ch is messy and inelegant; or 'POKE the screen with blanks ' -
which is slow. For a C2 the shortest version of the latter would be:

FOR X=53248 TO 5529 5 : POKE X,32 : NEXT
which, at a standard 1 MHz clo ck speed, takes a good half-minute. The BASIC version of
the fast machine-code screen-clear is rather more tangled :

10 A=208
20 Y=0
30 Hl=255 : POKE Hl,A

10

,: ,,
11

,_.

40 LO =25 4 : PO KE LO,Y
50 X= 4 : REM on 2K screen memory (C2/4, Cl-E , etc) X=8
60 A= 32
70 POKE(PEEK(LO)+ 256* PEEK(HI))+ Y,A
80 Y= Y+ l : IF Y= 256 THEN Y= 0
90 IF Y<>0 THEN GOTO 70

100 POKE HI , PEEK(Hl) + l
110 X= X- 1
120 IF X<> 0 THEN GOTO 70
130 RETURN

Try running thi s as a BASIC program - you ' ll find it will take nearly twi ce as lon g as the
simple 'POKE the screen with blank s'. The machin e code is as follow s:

A9D0 LDA#$D0
A000 LDY #$00 ;zero index for later
85 FF STAHi ;point the LO,HI pair
84 FE STY LO ;to the beginning of screen
A204 LDX #$04 ;08 for 2 K screens
A920 LDA#$20 ;ASCII 'space '
91FE STA(LO) ,Y ;blank the current location
CB INY ;bump up current location
D0FB BNE- 5 ;and loop back until Y 'overflows '
E6 FF INCH! ;bump up to point to next 'page '
CA DEX ;check last page not done
D0F6 BNE - 10 ;and clear next page if not
60 RTS ;else return

This gives you a subroutine that will clear the screen in about one hundredth of a se
cond - around 500 times faster. The catch is that you have to be able to get at it some
how! Although the routine itself is relocatable - it has no absolute addresses within it - it
has to be put somewhere. On the assumption that it will be used with BASIC, we can
place it in the 'free RAM ' area in page 2 (around 576 10-760 10) - $0240 is probably the saf
est all round .

Using the standard SYNMON /SYN600 monitor, type. (for address) 0240 / (to input da
ta as hex values) and then each hex pair , separated by 'RETURN' (<l): A9 <l D-
0<lA0<J00<l85 and so on to DO <JF6<l60<l. Each of these values should ' roll' into the
two-digit part of the display; the four-digit value (the current address) will go up by one
each time you press 'RETURN', and a random value will appear at the same time in the
two-digit area, to be replaced by your new value . After you've pre?sed 'RETURN ' after the
last byte , the 60, the address counter should read 0257.

With EXMON, type @0240, then each value separated by LINE FEED. With CEG
MON , type .0240 then type each value separated by, (comma), LINE-FEED (v') or RE
TURN - it's probably simplest to type them in as in the assembly listing, such as:

A9 ,D0 v'
A0 ,00 v'

Since this is stored in that 'free RAM', it isn't wiped out by BASIC when you cold-start. But
it is, of course , lost when you turn the power off. We can presume that you don ' t want to
have to type it in with the monitor each time you start your sy.?tem! But BASIC can ' t use
hex - it only knows decimal - so we have to go about it another way. One is to convert
the whole lot to decimal DATA statements, and POKE them in at the right addresses:

11

tL- ::::r

.,,,,,,,..

t.
1
1

(I,.t
,,. ,,
J

:r.
,/

-'.it

~'

.;,
•

"~11 t,

.,/

(e'

...,,.... •• ~~ . """"'·'~,n..,,~~

Dealer Notes

~~- n1oving in OS1... , , •re's been quire a bit happening on the OSI front these past few months. ~- kind,of
fm.-ise deal has been arranged with CDC, the mainframe giant, to s~II OSf eguipmt;mt
; 1ptobably as 'CDC's micro' - fn CDC's 'retail' outlets in the States. An impor'fant5'de
effect is that CDC are busy converting their Plato program suite/database to run~ OSlkit
from C2-D upwards . This is stilt mighty expensive - probably well over the £5,l;J~ ~t~
- but it's a fraction of the present cost; and when you remember that you can ~J'tg i;wer4.
dozen C 1 s off the main system, ·1t make$ for the cheapest purpose-bu i It schools system-er~
er. Worth-watching out for that. ·

OSI - or rather our old friends American Data - had a stand in Compec at Olympia a
month. ago. American Data had finatly sprouted a UK subsidiary, American Data. (\J'K)
Ltd. But since tlieir prices are o~ty minutely lower than before (e.g. £165 for a standard
Stiperboard), we doubt if their market j}OSttion will rnuch improve. For the same rea~
although the dealers were all there - Pete Fawthrop of CTS, Alan Garrett of Mutek and
Steve Hanlan of Beaver, to name but three - we rather doubt th.at they will be rusblfl;g
back into American Data's 'official' fold. . · ..

The much-heralded new Cl Series.I* was also at Compec. We don't ellcactly think it wi-ff·
improve 051's m~ket position either - quite the op.postte. It has all the ha#lmarks afJt
badty thrown together bodge- a nasty plastic case, a .profu5ion of I itde add-on and stitk
on boa,ds .1f:t fix Ollle tfflof 'Of' the other; the seriaf and parat1el ports, colour and sound,
while t~ ,en prilldp:1~, ara f'i()t thei'i!! M fJct, for they areti't actually implemente~; the

• keyboar.dane•rbasc tt of:tector are asscMtetbrained as ever. The colour memory starts at
$0400 insted of $1000 (for no appa,ertt reason), wMch makes a 2K screen memory very
much mor-e difficult to implement; and the much-vaunted 12 x 48 screen format can only
run with a s~are patch, which tn any case over'wrjtes the few locatrons that Its sttlt ~- .
surdly limited machine-code monitor uses. Documentation is marginally improved, but
stilt dtabolicat- most of it i.s fot the disc system which waSfl't even at fhe show. The oifly
good point was that the BRE.AK key, although stiH in the same ptace, now h~s a practical
safety device~ you have to hold it down for a second fpres.umably for a capadtm) befm~.
!he BREAK srgnal goes thtoogti. The Cl Serres 11 repLtces the e,risting C 1, and costs around
a hune,ed pounds more; the SupeFhoard, at tk<! moment, is unchanged. So the mpral of
this sad:~·le is: if you are thinking of gettrngtlte old~styfe Cl, get it now, before it'steo I.ate
- because its 'improl'ed' version is certarnly not worth the wait or the extra cost.

l we fbt.f1'her OSI titbits: Barbara Ha ff 11as resigned ~~m American Data~ no reas<>n gtv
en, but ~ ~'f btame her wrEh' the l'ffl!ss tliE!y'W rnit. of fh~lr Of)erations here. And OSI
themse~h-ave beef'I takeNover by, a conSE1rUum cMfed Macon: we heard this about a
cow-pfe. af.·~ ~for,e goiffg to press, so no further det'.iits as yet. -~.,..., . .

The ~ -~hmselw!s have beel'l go;-r~the usual hiccups: Watford Electro,r
ics palfed cofflpany froflh the Mighty Micto~. fol-lowed by Ian Jont!l9, whe h.Js
sefuJ!) hi:sow#ffim 1 Mifieclf?St(9ee ~. ~ afflfnrtions abound- O~ve PhiHps
of Notthambt!t and' 'PhilllfaMhas adcrod a new company to his list, nameiy OSI Cam~-
tet5! .

We've always ~ •~ wlUf groat) SUipicion by Pete Fawthrop of CTS - fw..,., .
gittded u.s at a 'walki~ atli'mt·fet.~f(•, tlmich we're not (we hope(). We met-~ .•
Compec, .trt(f w.e-,.,_We"~~b1t6therw--bat we do wish he woultl~
us.(teJails of;'lltnat,hl/ &~~ ,•¢.tj~ljffsh,fhem here-. We h'lMf,. ~f,; W
repea.1e'dcol!hfmf'-ltsftoffl,trlfflflbett tboutm s-very lt;gh level of servke, even from i!fS M
afield as liMstot (CTS-are lf!I l.an<taSh#e}: t<eep up the gnod work - but do keep us irt
formed! Thei.r number is 0706 79332.

l

,1 ~ .
.. I,$

_-·:.. ~J....
• ./

- r

'i

1,, ,,,
,I

On the service front, we've had comment~ of a different kind about two other dealers.
One has an· infuriating habit of leaving the phone off the hook; the other, a software
house, does have an answering machine, but doesn't seem to play it back very often, and
in one case has taken up to two months to send off software that's been paid for . We know
that both have had difficulties with expansion-of business; but would they please do
something about it, or we'll be rather more explicit about who they are next time.

Odds and sods
Various interesting items arrived or on the way. Beaver Systems will be importing a pro
grammabl'e character generator early in the New Year: details from Steve Hanlan on 084
421 5020. And the indefatigable Martin Kay of Zen Computer Services (061 962 3251)
sent us this release:

"48-line compatable 8- in/8-out (PIA) board at £14 .00. IBM Selectric interface board for
do-it-yourself conversions, requires 8-in and 2 handshake lines from PIA and 50v supply
to directly drive solenoids . Uses a software code conversion - suitable for all systems.
Board £15.00, software £5.00.

"Coming soon (prototype built and working), a 32K dynamic RAM board (kit). With
16K supplied around £95.00; with full 3:!K around £120 . 8K block select, 1 MHz , single
5v supply, 0-6A consumption."

The saga of BASIC ~ .
.BASIC 3 is the chip with OSJ's garbage-creating 'garbage collector', discussed in detail
last issue. At that time we'd had brief words with Comp Shop about doing a piggy-back
order along with their current order for ma~ked lt()Ms for their next batch of UKl 01 s; they
seemed. aQ1enable to the idea of letting us have them at cost for our members. At Bread
board the other day, however, it seems a) the new ROMs won't be here until February, b)
th~y haven't ordered any extra, and c) they may well have the wrong garbage-collector
•fix' in any case! Ah well, we did try!

But Steve Hanlan of Beavertold us that he'd located a manufacturer of the fixed BASIC
3 in the States; and Dave Graham of Mutek is keen to produce EPROMs of BASIC 3 and
BASIC 1 (for the 'unmask' and perhaps for user-defined keywords). More definite details
on this next issue, we ho~.

David Richards (Printers and Distributors) Ltd, 61 Hoe Street, London El 7 4SA. Tel: 01-
521 5231.

Continuous stationery for prihtout , _you know the stuff: drive holes down the side, perfo
rated horizontally. Complete range of standard listing paper from stock, including music
ruled paper and gummed labels. Your own headed notepaper, invoices etc. to order.

Chroinasonic Electronics, 48 Junction Road, Archway, London Nl 9 SRO. Tel. 01-263
9493.
We should h~ve had Chromasonic on the list ages ago. Deals mainly in UKl 01, with a full
range of add-ons: 16K Smart-2 RAM kit, printer interface and (shortly) multi-way D-A unit
and colour system.

Dola Software, l 17 Blenheim Roa<;I, Deal, Kent.
We've had sev.era:I members recommend Dola's software, for Cl /UKl 01, and also Acom
and R-esearch Machines 380-Z. They' re also organising a weekend course on micro--com
puting, particularly for 6502-based machines. It will include plenty of hands-on practical
work. The course is on 6-8 February '81, at the Royal Hotel, Deal; cost about £65. Details
from Dola's J.M. Leach·. -

ii

h,~
i:::• - - -- ___ J_ ..z:::w:;::::x: :

~I

'ffJ!!
,

Mittecrest, 61 New Market Square, Basingstol<e, Hants. RG21 1 HW.
Phone: 0256 56468 and 5641 7. ·
Also known as Micro Peripherals, Ian Jones' new company deals mainly in peripherals
like printers - currently pushing the new high-speed version of the Base-2 printer, for ex
ample .

small-ads

'Breakout' game on tape for Superboard or Cl . Bat is controlled by potentiometer, mak
ing it very easy to use. 2 simple hardware mods needed. All components ready iS
sembled, tape and full instructions for only £3 . J. R. Fletcher, 45 Haydn Ave, Purley, Sur
rey, CR2 4AG .

TTY ASR28 for sale. Keyboard, printing, perf-tape reader, page printer, 3 handbooks .
Working when taken off circuit. £20. Motor-start relay and circuit unit available at £7 .50
reinstatement charge. Buyer collects. P. Knight, Sevenoaks (0732) 62227, or 01-242
4433 ext 4287.

EXPANSIONS FOR SUP.BOARO/C1, CO~PUKIT. Light pen £12, parallel 1/0 port.
Two versions; s,rr,pfe £18, advanced £35, Eprom programmer £28 (single supply) and
more -please sae fo'r further info. Cheques and PO's to 8. Minstry, 75 St Margaret's Rd,
Bradford; West Yotks. Members of OSI user group deduct £2 per item. Prices inclusive.
AU items ready built and tested with good documentation. For kits add £2.00 extra. Our
primary aim is quality not quantity.

Computerlown
For those who haven't heard about it, Comp~tertown is the UK version of .a kind of
'computer-literacy' scheme - a slight misnomer, but never mind .-Originally devised in
the States by Bob Albrecht and others, it was started up over here by Dave Tebbutt and
Peter Rodwell of Personal Computer World (see PCW November '80). This seems a very
good idea to us; so out in the backwoods of Street, Somerset, we're setting up our own
Compu'ler Town.

The idea is simply to let people play with computers. Not to sell, evangelise, cajole -
just play. We happen - crazy fools - to like computers, but most peoAle don't. But
whether they like them or not, people ar(;! going to have to live with them; so it's up to us
to make that fact as palatable as possible by showing that computers can be fun.

We're fortunate here in that we'll shortly be moving part of our stuff into the shop next
door - ideal for a Computer Town setup. We have at present one C2, one C3, promises
of two Cl sand of a Sharp MZ-80. We're alter more, of course! Anyone with an old Pet
they don't want, would you care to contribute it to a good cause?

We hope to be starting up in January at 19a West End, Street, Somerset, initially on
Monday evenings only. (The chip shop a,c~s the road is shut on Mondays - otherwise
have you ever tried scraping congealecffish and chips out of a keyboard?!)

Anyone in the mid-Somerset area interested in helping, please contact Tom Graves at
Street (0458) 45359 . ·

iii

..

•I'

:I
1
11

If
:[

ii .,
Ir
,!

:1
j[

ii

'I

User Group Not~

The User Qt:oup and UK18ls .
A lot of pro.pie have asked us our 'policy' on UK101s - do we accept 101 users as
members? Or are 101 s)enemies'! The obvious answer is, yes, of course we want Ul<101 s
with us - more, more! ·

Our feeliqg is that the UKl 01 should not really be regarded as something separate from
051 kit It uses exact ly the same BASIC as the Superboard (early versions even left the au
thor's name unchan,ed ...), the circuitry is best described as a 'photocopy' rather than a
copy of th~ Sup~boafcl, and the memory map, 1/0 and very nearly everything else is pret•
ty much the same as ~ton the Cl /Superboard se1'.ies. It has consitferably fewer differen
ces that'I the C2, for example, let alone the C3 series. And what with the bewildering var
iety of screen formats in the OSI range - including aH the home-brew jobs - there's not
that much of a cJi.stinction to draw. CompShop may have the cheek to call the UK101 their
own design; but as far as we're concerned, it's an OSI machine with a few add-ons. And
with that said, we do want to know about the use and uses of UKl 01 s as well as the more
conventional .OSI machines .

ln~eal\:VQne asks . ..
. . . don't forget to tell them about the User Group! But just to remind anyon~who isn't
S1Jre, membershipAsubscription of the Gro~p is now £10.00for six issues. We're also ad-

• justing everyone's renewal flgUFes so tha! ~l'f~t year, all subscriptions will be due for rene
wal in Detember, with the begjnnmg of ",¢ilom:e J - and yes, we do intend tobe around
tha\ long! · • '·· ' · ··

. Tfie ~we festive hit .
. No doobt you're as fed up wit!\ the 'tun-up to another commercial Christmas'; but this

issue happens to coindde with the ~son, and anyway it may gtve you somethtng else to
thiRk about, oth:~r than children's efectronic 'computer' toys which forget to warn you
about -their fl'agitity or their absence of batteries. We hope you'll find this as Interesting as
thtn :hildren's annuals! 'tou'tl be hearing from us again in February, a month earlier now
that t~e Newsretre-t has gone bi-mp11(hly.

Al:ld b~st wishes from all ,of us, of course.

iv

. .,
-~i·

--·----

FOR X=5 76 TO 598 : READY : POKE X,Y : NEXT
DATA 169, 208 , 160, 0, 133, 255 , 132,2 54
DATA 162, 4, 169,32 , 145, 254,200 , 208,251
DATA 230 , 255 , 202 , 208 , 246 , 96

A final problem , for thi s time , is to connect this routine to BASIC in such a way that it can
be called direct as a subroutine within BASIC There is a provision for thi s, in the USR(X)
function. As usual, OSl's description of this in t'he 'ma nual' is both garbled and wrong!

USR(X) is used as a means not just of calling a machine-code routine , but of transferring
values to it if required. We don 't need that part at the moment ; the only thing we need to
know is that the BASIC statement X= USR(X) jumps to a machine-code subroutine pointed
to by two location s. In the BASIC manual we are told that these are 23E and 23F- which
appears to be true for disc systems under 65 D, but not for BASIC in ROM . The right loca
tions are (decimal) 11 and 12. They need a two-b yte hex address, in the right order and, of
course, converted to decimal - just to make things easier? The right order is the low byte
first; a peculiarity of the 6502 which apparentl y allows it to run faster. If the start address of
our screen-clear is at 576 10, convert it to hex: $0240 . The high byte is $02 , and goes in
1210 ; the low byte is $40, or 64 10 , and goes in 11. Thus POKE 11,64: POKE 12,2 sets up
the USR function to point to our screen-clear at $0240 , 57610. Note, though , that al
though the screen-clear will be untou ched by cold -start, these two locations will be
cleared then - in fact to point at the FC (function call) error - and will be need to be reset
after co ld-start.

To set up the screen-clear:
10 FOR X=576 TO 598: READY : POKE X,Y: NEXT
20 DATA 169, 208, 160, 0, 133, 255, 132, 254
30 DATA 162, 4, 169, 32,145,254,200,208 , 251
40 DAT A 230, 255 , 202, 208, 246, 96
50 POKE 11,64 : POKE 12,2

Thereafter, to call the routine :
X=USR(X)

Next issue: the disassembler, and a TRACE function for BASIC

Errata

It seems to be more than about time that we owned up to our mistakes1 A number of
members have pointed out the following errors which escaped our 'quality control' -
thanks!

Issue 7: In the page-zero locations, the pair to be printed in dec imal should be $AC, $AD
(not $AD, $AE). Also the current cursor location on Cl sis at $D300+ ($0200); the value
shown, of $D700+($0200) , is correct for C2s. In the remote switching option in the hard
ware mods, Ul 4 should be U41 - thi s has been corrected manuall y in most cop ies, but
some may have slipp ed through.

Issue 2: On the diagrams relating to the video mod for the Superboard/Cl, fig.3 , point K
should be the plated-through hole just below the track marked . PTH E should be above
pins 2 and 3 of the character generator.

Issue 4: Page 3: Ray Fox's first function should end +(X=0), not +(X) as printed. Also Dr
Abbott's video mod is essentially correct, an update is in preparation - please wait for it!

12

•

f ,_,

Screen 'menus' for the Cl

Since I sent you the modified input routine to allow real-time keyboard scanning, I have
discovered why it ignores a "RETURN" - this gives a value of 13 10 (i.e. carriage return
without line feed) instead of the expected 96!

With this in mind, and needing a system to input and display array variables in a pro
gram to calculate shift duties for a nursing acquaintance, I decided to develop the routine
into one capable of supporting a flashing cursor. I have abstracted the lines dealing with
the cursor management and screen array input and output, and present them in the hope
that they will prove useful to other Cl users. As well as the program I am including some
notes on its operation and possible modification.

10 GOSUB 10000
20 FOR 1=1 TO 30: PRINT: NEXT
30 C=53381: Kl =PEEK(C)
40 X=0: Y=0
50 POKE C, 161

100 FOR T=l TO 20
110 IF T= 11 THEN POKE C,Kl
120 X=USR(X): K=PEEK(531): IF K<12 THEN 160
130 IF K=44 OR K=46 OR K=47 OR K=59 THEN 200
140 IF K=32 OR (K>47 AND K<58) OR (K>64 AND K>91) THEN 170
150 IF K= 13 THEN 300
160 NEXT: POKE C, 161: GOTO 100
170 Kl =K: K=46
200 IF K=46 THEN X=X+ 1: IF X>23 THEN X=0: K=47
210 IF K=44 THEN X=X-1 : IF X<0 THEN X=0
220 IF K=47 THEN Y=Y+l: IF Y>22 THEN Y=22 : GOTO 400
230 IF K=59 THEN Y=Y - 1: IF Y<0 THEN Y=0
240 GOTO 320
300 IF X>0 THEN X=0: GOTO 320
310 Y=0
320 POKE C,Kl: C=53381 +X+32*Y: Kl =PEEK(C): GOTO 100
400 END

10000 Y=546
10010 FOR 1=64768 TO 64967
10020 X= PEEK(I)
10030 POKE Y,X
10040 Y~Y+l
10050 NEXT
10060 POKE 661,66
10070 POKE 11,34: POKE 12,2
1 0080 RETURN

The base screen address (53381) c1nd maximum values of X and Y (23 and 22 respectivelyJ
work on my TV; they may need slight modification for different sets. Limitiri~ Y to 22
leaves the normal print line clear for messages (use PRINT CHR$(13);"MESSACE"; to
avoid scrolling the screen and confusing the cursor!).

Auto-repeat functions normally on all keys (including the cursor direction keys, al
though the cursor is not displayed until the key is released), allowing multiple entries in
the X-direction and rapid cursor movement in any direction.

13

\.

J

Lines 10000 to 10080 copy the monitor input routine into the unused page-2 RAM ,md
modify it (line 10060) to prevent it looping indefinitely until a key is pressed, thus allow
ing the housekeeping necessary to display a flashing cursor. [CEGMON users: refer to
page 16 of the CEGMON handbook for the CEGMON equivalent - Ed.] If RAM space is
limited these lines can be entered before the program proper, RUN, and then deleted with
NEW, leaving only the page-2 machine-code. Control-C is not disabled as it is when poll
ing the keyboard the OSI way, and will operate normally when the main program is run
ning.

Line 130 and lines 200 to 230 define the cursor control keys (<, >, + , ?) and can be al
tered if other keys are preferred.

Line 140 defines the valid ASCII values from the keyboard, and lines 170 and 320 poke
the selected character to the screen. Modifying Kl between lines 170 and 320 will allow
graphics characters to be poked directly from the keyboard to the cursor location on the
screen. ·

X and Y are always valid co-ordinates for the current cursor position and can be used to
enter the keyboard ASCII value into an array, A(X, Y).

A phantom cursor using Cl =5338 1 +X l +32*Yl (with Xl and/or Yl in a FOR:NEXT
loop if required) can be used to peek or poke information from or to the screen without
disturbing the flashing cursor.

Jumping out from line 170 to a subroutine allows the entered character to be processed
(e.g. summed into row and column totals) and the result di<rlayed immediately. NB start
the subroutine with POKE C,Kl or nothing will appear to hawen for a while, and use the
phantom cursor to display the results or the flashing cursor will be displaced on returning.

Lines 300 and 310 reset the cursor first in the X direction and then, on a second pressing
of the RETURN key, in the Y direction. If preferred , they can be replaced with 300 X=0 :
Y=0 to do the whole job in one keystroke.

By inserting additional statements (e.g. AND X<>l 3) into the brackets in line 140 it
can be made impossible to enter either figures or letters into specified rows or columns; il
legal entries will simply default to the NEXT in line 160 . This may be useful in preventing
errors when processing the array data. Rows and columns can be reserved in the same
way for output rather than input by stopping the cursor from entering them (lines 200 to
230).

By modifying lines 200 to 230 to increment or decrement X and Y by 2 the cursor cc1n be
made to jump over a grid of lines previously poked to the screen allowing clear separation
of rows and columns at some sacrifice of display space.

Entering a space at the cursor location will delete the character there, and store a 32 10 in
the corresponding array variable. Characters can be over-written simply by positioning
the cursor over them and entering the desired new character . These two features make ed
iting and altering the array very easy.

The array corresponding to the screen display can be larger in both directions than the
screen itself. Entering a digit corresponding to the desired top left X or Y co-ordinate in a
reserved position can easily be made to poke the screen with values from the specified
area of the array. The screen thus becomes a window , through which any desired part of
the array can be viewed and modified.

Although the cursor controls are specified as<, >, +and?, it is not necessary to use the
shift key in conjunction with them to move the cursor, provided the shift-lock key is down
as it would be in normal keyboard usage. These keys were chosen for their labels (3 out of
4 are correct!) and spatial layout on the keyboard .

Lines 100 and 110 control the flashing frequency of the cursor, and can be easily modi
fied to alter the flash rate. If modifying this part of the program, don't put too many state
ments into the T FOR: NEXT loop, or the keyboard scan rate will be slowed down and
some keystrokes may be missed whilst the program is busy doing other things. In normal

14

,I

lj' !
I!:
I

j

use, the cursor will stop flashing whilst the entered character is stored and processed; key
board scanning is disco ntinu ed until lin e 100 is reached again, preventing erroneous data
entry.

John Attwood

Passing multiple values through USR(X)

As a produ ct of my recent initiation into machin e-co de, I tack led a problem you referred
to in the first issue of the News letter , namely a 'fast print routin e' requir ement. The solu
tion shown here is near ly three times faster than a single POKE to input a compl ete 'mes
sage'. It works by coding the screen address and the message directly following the
USR(X) statement in BASIC. For examp le:

X= USR(X)XY"***
would wri te** * near the top right hand co rner of the screen. For the standard Superboard
the origin is at CC, the top left hand co rner at CZ, the top right hand co rner at ZZ etc. Thus

X = USR(X)G B"TITLE
wi 11, on a standard Superboard, put a title on the non-rol I part of the screen at the bottom .
For a C2, the alphabetical coding will , presumably , only cover centre of the screen, but
the top and right hand edge can be got using [I l j (SHIFT K, L, M, N) and the bottom line
and left hand edge with '?'. As the 'message' is entered as part of a BASIC program the
graphi cs characters cannot be included [except by using a BASIC-unmask routine - Ed.] .
However a slight swindle does allow a few of them to be inc luded , simply be replacing
the " (character 3 in the sequen ce) with a space and allowing the BASIC-token 'co der ' to
operate on the message. Thus

X=USR(X)CC NOT
will place a bright square - the graphic representation of the BASIC-token value for the
NOT operator - at the point C,C.

I make no c laim that this is the fastest code that can be dev ised, as over half the code is
needed to reconstruct the screen address from the first two bytes in the sequence. By using
less convenient screen mappings or otherwise, I would imagine factors of two or more are
still to be had. How about an animation program competition for Christmas?
Get X, Y co-ordinat es and transform to screen location s:
A000 LOY #$00 ; Y=character counter
Bl C3 LOA ($C3),Y ; getlstletter - Xco-ordinate
18 CLC
69 BF ADC #$BF
85 EO STA $EO
CB INY
A9 SF LOA #$SF
18 CLC
Fl C3 SBC
85E1 STA
4A LSR
4A LSR
4A 1:.SR
18 CLC

($C3),Y
$El
A
A
A

69 DO ADC #$DO
85 E2 STA $E2
AS El LOA $El

15

co nvert 'A-Z ' letter5 to 0-25 values
, temporary 'X' store

set to get next char - Y co-ord

convert 'Y' letter to Yvalue
temporary Y-coordinate store

(effective multiply-by-32)
(to add line value to high byte)

add $DO for high of screen address
store screen hi in $E2
get 'Y' from $El

/

ti
0A ASL A
0A ASL A
0A ASL A
0A ASL A
0A ASL A
05 EO ORA $EO
85 El STA $El
CB INY

Transfer message to screen location s:
CB INY NEXT
Bl C3 LOA ($C3),Y
F004 BEQ EOL
91 El STA ($E1),Y
DO F7 BNE NEXT

,

(multiply by 32)
(for low byte of
(screen address)

Add 'X' co-ord for final lo address
store screen low in $El
skip 3rd char(" or space)

set for message char(s)
get next char from BASIC lin e
exit on null (end of BASIC line)
store direct to screen
always jump ·to get next char

'Fix' BASIC pointer to ignore 'message' and co-o rdin ate characters:
98 EOL TYA ; no. of message+co-ord chars
18 CLC
65C3 ADC $C3
85 C3 STA $C3
BO 02 BCS EXIT
ECC4 INC $C4
60 EXIT RTS

calculate new point er-lo
and replace
updatl · $C4 point er-hi

if necessary
and return

In the first issue also, a number of routine entry-points were given . Although some partic
ular error code routines are listed, more useful is the entry point at $A25F . This routine
prints the contents of the accumulator (A-register) follow ed by ERROR IN (BASIC line
no.) . Using this it is easy to give machine-code routines their own singl e letter error
warnings.

ANofHER wA'f
lo 0£-suq

\/ouR
V~olrRA/.\5 J

~

16

I
11!
ri

Self-starting programs

This technique originated simply as a means of appending a RUN command to a SAVEd
program but has now developed so that it provides a means of loading machine-code, set
ting storage limits , setting screen widths and in general performing initial housekeeping
for a program without using run-time code space. I keep the code shown in printout 1 on a
cassette and when ready to SAVE a debugged program I load it in behind.

To SAVE the program I enter RUN 63900, which causes the following to happen.
63900 picks up the end -of-text address. The loop formed by 63910-20 scans backwards
down the program replacing all '%' (CHR$(37)) and the single ' !' (CHR$(33)) with Car
riage Returns (CHR$(13)), until the ' !' has been processed. 63930 then delays a nice long
time to allow the lengthy leaders on the salvaged Data General software distribution
cassettes I use to pass by , then initiates a normal SAVE procedure ; the whole lot , CRs and
all, now gets written to the tape up to the EOT address which is unchanged .

When the tape is LOADed everything is normal up to and including line 639 50. After
this every line number is imm ediately followed by a CR and is therefore ignored , but the
rest of the line (except for the special case of 63998) is treated as an immediate command
string and executed. 63960 /61 between them load a screen-clear routine into Hex 222
and up, using the subroutine in 63940 /50 to convert the Hex characters loaded into X$.
The crafty bit here is the two'% ' at the end of each text line , which are put as far apart as
you can get them to give the cassette reader something to chew on while the conversion
subroutine does its stuff. I run my cassette at 600 baud and ten bytes at a time seems to be
about as much as it will take; at 300 baud I imagine you could get away with a few more,
but ten is a nice round number anyway!

If machine-code is to be loaded into high memory, say at 8000, then you must include a
line of the form shown in printout 2 to set the memory limit so that X$ does not get mixed
up with the code you are loading. Incidentally the line numbers fo llowed by CRs do have
the effect of making the system perform a CLEAR before each text line is loaded so that
X$'s data always resides in the highest memory available.

63998 turns into a string of deletes for the I ines from 63900 to 63950.
63999 clears the screen, sets the line width to suit the crummy old TV I use, turns off the

LOAD switch and finally kicks off the program.
If anyone has any ideas to improve this technique please communicate!
Not the least of the virtues of this method of loading machine-code is that it is entered in

nice intelligible Hex instead of strings of totally incomprehensible decimal DATA state
ments.

Printout 7
63900 X=PEEK(l 23)+PEEK(l 24)*256
63910 X=X - 1: y=PEEK(X): IF Y=37 OR Y=33 THEN POKE X, 13
63920 IF Y<>33 THEN 63910
63930 FOR l=l TO 12000: NEXT: POKE 15,72: SAVE: LIST

Nicholas Spalding

63940 FOR I= 1 TO LEN(X$) STEP 2: Y=0: FORJ=0 TO 1: K=ASC(MID$(X$,l+J, 1))--48
63950 Y=Y*16+K+7*(K>9): NEXT: POKE M,Y: M=M+l: RETURN
63960 !X$ =" A920A2009D00D39D00D2": M=546: GOSUB 63940%
63961 %X$="9D00D19D00D0CAD0F160": M=556: GOSUB 63940%
63998 %63950%63940%63930%63920%63910%63900
63999 %POKE 11,34: POKE 12,2: X=USR(X): POKE 15,22: POKE 515,0: RUN

Printout 2
63970 %POKE 133, 8000 AND 255: POKE 134, 8000/256

17

A named-file handler in BASIC

Quite a lot of people have asked us for some kind of file-handling system in BASIC. This
short routine from 0.1. Swift goes a long way towards solving that problem:
Thi s program enables you to name all your programs and load them back from tape by
name. It will work on all BASIC-in-ROM systems - UKl 01, Superboard/Cl and C2/C4 .

To use it just add two lines to the beginning of your programs. Both are REMs: the first
conta ins the program name, the second is just padding , to give BASIC time to get ready to
load the actual program.

For example:
5 REM *NAME#
6 REM

in other words enclose the program name with * and# .
After putting these two lines at the beginning of your program , SAVE it in the usual way

- i.,e. type SAVE (Return), then LIST (Return).
The program will then be stored on tape as usual. When the computer comes back with

its 'OK ' prompt, stop the tape, type PRINT "POKE 515 ,0" , restart the tape, and press Re
turn. (This POKE is used to switch off the load flag when loading back the program , to stop
any other information on the tape from being loaded).

If you use the same line numbers in your program as those in the 'SEARCH' program,
not only will your program load correctly, but while it is loading , the 'SEARCH' routine
wi II be automatically deleted, leaving the entire memory for 1..se. [Another solution would
be to place the routine at the 'top' of BASIC memory by using high line numbers - Ed. I.

10 REM *SEARCH#
20 REM
30 FOR X=l TO 24: PRINT: NEXT: INPUT"Program name";N$
40 PRINT"Press play on tape"
50 FORT= 1 TO 3000: NEXT: PRINT"Searching for" ;N$
60 X$="":F=0:CA=61440: POKE 515, 1: REM-CA=64512 on C2/C4
70 WAIT CA, 1 : P= PEEK(CA + 1)
80 IF F=0 AND P<>42 THEN 70
90 IF P=42 THEN F= 1: GOTO 70

100 IF P= 35 THEN 160
110 IF P=32 THEN 70
120 IF LEN(X$)>7 THEN 60
130 X$=X$+CHR$(P): IF X$<>N$ THEN 70
140 POKE515,0: PRINT"Loading";X$
150 GOTO 180
160 POKE 515,0: PRINT"Found "';X$;""'
170 GOTO 60
180 LOAD

A sample RUN:

Program name? 3D
Press play on tape
Searching for 3D
Found 'SEARCH'
Found ' HEX'
Loading 3D
OK

.....

18

!i'

Ii:

Hardware Mods

A number of suggestions from John Partridge, for alterations to the 540 Rev. B video board
used on later C2 and C4 systems.
32 characters-per-line mode on start-up
If you would prefer your C2 to start up in 32 mode, cut the track to U4G pin 3, and con
nect the track to pin 2.

Reverse video for whole screen
1 Locate U2B position .
2 Remove the link from hole 5 to hole 6.
3 lnstal I a 14 pin DIL socket.
4 On Ul D location , link holes 1 and 2.
5 Install U2B (74LS86).

Page-swap when in 32 mode
With the capability of CEGMON to write into differ ent 'window s' on the screen, thi s mod
ification enables the 'hidden ' page to be written to , and then instantly displayed .
1 Break the track leading from USE pin 14 to USK pin 10. This can be done most conve

niently near the plated -through hole between USE and U6F, on the underside of the
board, as shown below.

• U5E'

TRIAi. Toc.ur~~s~~ ~~
~{IJ
---0

.UbF

2 The 'hole ' side of the break is connected with thin wire to U2B pin 13.
3 The other side of the break is connected to U2B pin 11.
4 Connect U2B pin 12 to U4G pin 10. (A track from U4G pin 10 leads to a plated

through hole at U4F, and this provides a convenient connection point).
With these modifications carried out, POKEing 56900 will change:

(a) screen size with bit 1
(b) noise enable with bit 2
(c) change page with bit 3
(d)' reverse video with bit 4

It should be noted that the modifications use colour clear and AC control signals for the re
verse video and change page respectively.

19

/

~

Reverse-video for selectable pixels
This feature is already built into the unused colour circuitry on the 540 board. By install
ing Ul C, Ul D, Ul E, Ul F, U 1 G, Ul H, U2B, U6B, U6E, U6F, any pixel can be 'reversed '
by POKEing into the new memory located from $EO00 to $E7FF; e.g. POKEing 1 into
59021 ($E68D) will reverse the pixel at 54925 ($D68D) on the screen memory map. The
reverses are enabled by POKEing 56900 with any number with bit 4 set.

Programmable alternative graphics set
The new memory added above also allows for Red, Green and Blue bits to be set for each
pixel , and these are so far unused [but we have a major feature on colour implementation
coming soon - Ed.] . Although I have yet to try it, one of these bits could almost certainly
be used to select between two character-generator chips. If a 2716 EPROM is used as the
second character generator it will be connected in parallel with the existing 2316, apart
from pins 18 and 20 on each chip , which can all be connected together, but not connect
ed to the existing circuitry, but instead to U 1 E pin 7. U 1 E, not U 1 Dis used to get the tim
ing right. Using a similar example to the previous one , POKEing 59021 with any number
with bit 2 set will put the alternative character on the screen at pixel 54925.

ASR33 Teletype send and receive on UK101
A note from Pete Targett. If you 'scope the the RS232 output on pin 2 of J3 you will find
that the line is always low when no information is being transmitted. Teletypes don't like
this and start talking to themselves! They require the line to be high (marking) in the wait
state. You can remedy this by supplying U62 pin 13 with (TxData) instead of (TxDafa),
from Ul 8 pin 10 (Fig.1). Clock the ACIA by one of the many published methods and you
have your Teletype receiving.

Ubl

---·· 0.ILIJNG OUT fEEO 'fWillOC.JGM

...............
uzo

""'""- T•llu,o.

u le

.!ll

•
._f.

-----·- --• -----

~ WI .. CASSETTE Ta.RTVPE

~--"____;'-- I :(

Do,o._~...!.!~

Now for the extremely easy method of reading from punched tape, or the Teletype 's
keyboard , into the UK10 1.
1 Fit Q2 and all associated component s (BC 108 is OK).
2 Break the link on pad Wl 8 (just up and to the righ t of Q2).
3 Fit a 2-pol e 2-way switch to the pad Wl 8 (Fig. 2). The other side of the switch can be

used for c loc k rate sw itching .
4 Fit an 8µ,f capacitor between J3 pin 2 (+ve) and J3 pin 3 (- ve).

~\JE IN

-\IE IN

'3 0
80
70
00
50
40
30
l 0
1 0

--20/"\"-. --- -(D-PURl'L.E-
-bOM.A.

--FUU. DOPU:.lC~'W\IITE/WJE-

--HAI.F DUPLE.)(',,

--AALF OUPL.ElC~r3«.0wN/'1£1..UM-

--POWER IN

--POW~ IN

Conn«.~!. 01\ -In~ ~ of T~pct (~ 1M. ~ It\ tbirn/
!CJI' 20,...,,_ Nil\ l)l)p~ __ opca~ a:-~Ol_n_. _________ _

5 Connect Teletype up for 20ma half-dupl ex operation (Fig. 3).
6 Connect J3 pin 2 to Teletype +ve and)3 pin 1 to Teletype - ve.
Switch on the system and give it a go. Und er ' LOAD ' conditions the UKl 01 will read from
punched tape or the Teletype keyboard , and under 'SAVE' conditions will output to the
Teletype.

I have thi s working on two different Teletypes and two UK101 s. It work s withoutthe use
of a - 9V supply as Ray Fox suggests. Someone may find techni cal error in this , but min e
has been running fault-fr ee for nine month s!

21

System expansion
,I

Having got your microcomputer to work (not always easy!) and to run games etc. your
thoughts may be turnin g towards other app lications. Typically these could includ e one or
more of the fo llowing : drivin g printer s, di scs, tape drives, etc., running the hou se, co n
nect ing to other comp uters or as a RTTY terminal if yo u' re into amateur radio . As in the
case of my machine (Superboard) the basic design is lacking in 1/0 and other faciliti es,
system expansion is def initely required . Thi s wi ll invo lve adding additional hardwar e to
provide more RAM , ROM and various parallel and serial interfaces. There are to my mind
four possibiliti es avai lable at thi s stage:

(1) Use the OSI range of expan sion board s.
(2) Adapt other manufacturer s' board s.
OJ Make your own .
(4) A ll of 1-3.

Of course a who le host of other questio ns w ill now arise, mainl y to do with the format of
the bus, As, if any cour se other than (1) is selected, the OSI bus is unlik ely to be suitab le. In
n:iy case I'm fo llowing route (4), although I've only made my ow n boards so far. I've de
c ided to use a 19" racking system and my ow n 43-way bus. The parts for thi s system are all
readily ava ilabl e (Verospeed , RS, Comps or large dealers). As an alternative the Eurocard
racking system co uld be used, some ready made board s ex ist for thi s. An adva ntage of us
ing the larger 19" rack cards is that ex isting Eurocards can be 'piggy backed' onto them to
co nvert to diff erent bus structures. At thi s point there will no doubt be angui shed cries
about the expense of racking systems or motherboard s. My answer to this is, that the even
tual savings in reliability of the result ant systems will ouiweigh the costs involved . My sys
tem at present co mprise s a Superboard 2 in a case, with the full 8K of on board RAM. The
power supply is a 5 amp affair in a separate box, in my op ini on the best place for it! Before
embarking on any expansion, make sure the pow er suppl y will stai:_id it

My first board contains full buffering for the address, 0 2 and R/W lin es plus tw o PIAs.
These are a Motorola 6821 and a Syntertek 6522. The 6522 co ntain s two co unter/tim ers
w hich are very useful for clock s as they will generate interrupts . The above w i II give a total
of 32 1/0 lines on one board. The connector used for thi s board is double -sided so as to
provide a fully buffered backplane . A pair of 8T28 bus transceivers will be requir ed for the
main board to put in the existing sockets. The address buffers can be almo st any non-in
verting types, low pow er high speed types being the most suitabl e. I used 74LS367's but J

IJ quick study of any data book will revea l many other var ieties. As regards the rest of the
boards , LS TTL should be used where possible , also use IC sock ets as fried chip s don ' t
function very well .

Returnin g bri efly to the main board (Superboard) you wi ll noti ce that there is a lin e IJ
belled DID (data direction) . This is co nnected to the 8T28 bus driver s and the 40-way ex
pansion socket. This line is very important and must be used correc tly . Being tri-state the
8T28 's wi ll effectively isolate the main board from the expanded data bus unless enabled
by DID . T_he actu.11 logic is the inverse of the R/W (active low write) signa l from the pro
cessor R/W pin . DON 'T invert the R/W sign.ii from the proc essor and con nect it to DID as
suggested in ,11 le.1st om• magazine I've rl•ad . Thl' extern.ii bus read or wr ite must only be
enabled when there is val id d,1ta to be writtt •n onto the bus. Enablin g JI any other tim e, es
pecially durin g a proce ssor read ry cl t•, wi ll dump g.irhage into the system <!.nd stop it I The
best way of generatin g a v.i lid DID sign.i i is from ,1 rnmbina tion of 0 2, R/W and the rele
vant chip enable signa l. Nute th.it each periphera l must generate its own DID signJI to en
~ure correct data transfer timing . I won ' t go into further details as requirements will ob
viously vary for different systems. How ever, the 'THINK ' slogc1n could usefully be em
ploy ed here.

22

• .la I Iii , t rm ..., ..
b

..,,-

As regards a suitable interconnection method, wirewrap is probably the best, although .
I used solid wire and patience! At this point I ought to emphasise the importance of check
ing everything before switching on, as mistakes can be expensive! I hope this article will
inspire a few original ideas, don't be put off if you're not an electronics wizard, I'm only a
chemist! I've included a few references that I found useful at the end, as most manuals
omit such useful information. I'd strongly recommend reference (2) for non-technical
people . I learnt a lot from it . It's rather expensive, but your local library might help, if
you're nice to them.

References
(1) Texas TTL Data Book .
(2) Microproc essors and Microcomputers, Hardwar e and Software , Tocci and La

kowski (Prentice Hall) , ISBN 0 - 13-581330-1. A very useful book this , as it deals exclu
sively with 6502 software.

(3) Programming the 6502 . Rodnay Zaks (Sybex).
(4) 6502 Assembly Language Programming . Leventhal (Osborne /McG raw-Hill).
(5) Useful journals are: MICRO, Microcomputing , BYTE, Personal Computer World,

Practical Compuiing, Computing .
(6) 6422 Counting and Timing Techniques . M.L. de Jong.
(7) MICRO, October 1979, No. 17, 27-39.

Copyright 1980 OSI UK User Group, unless otherwi,;e st,,ted.

))

